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In relativistic Schr'6dinger theory, a physical system can be described by a wave 
function (,,,* "pure state") or by an intensity matrix (,,~ "mixture"). Since the 
space-time evolution of the system is described by a non-Hermitian Hamiltonian, 
transmutations of mixtures into pure states (and vice versa) would be formally 
possible. Nevertheless, the transition of a mixture into a pure state is dynamically 
forbidden, whereas the pure states are unstable and decay into mixtures. This 
effect is demonstrated by considering the Klein-Gordon-Higgs equations over 
an expanding Robertson-Walker universe. 

1. I N T R O D U C T I O N  

Perhaps one of  the most universal equations of  motion in physics is the 
Schr6dinger equation, which is thought to govern the time development of  
any physical system. But what is the origin of  the overwhelming success of  
such a relatively simple equation7 In search of  a better understanding of this 
success it seems reasonable to first have a closer look at the mathematical 
properties of  the Schr~dinger equation. For it appears very natural to assume 
that those mathematical properties are in intimate correspondence to the 
fundamental logic obeyed by nature in organizing the spatial and temporal 
evolution of matter. According to SchrOdinger's original idea (Wheeler and 
Zurek, 1983), this evolution should occur in such a way that a physical 
system is characterized by some wave function ~b whose rate of  change equals 
the action of the Hamiltonian operator/2/upon $,i.e., in modern notation, 

ih T =/~/10) (1.1) 

Though the physical interpretation of this equation has been shifted somewhat 
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off Schr6dinger's original conception into the direction of a purely statistical 
approach, the general form (1. l) has survived all attempts at falsification and 
persists up to the present day. 

What, then, is the crucial mathematical element inherent in (1. l) which 
so strikingly aims at the central point of  natural phenomena? Surely, once 
the state vector I~) as an element of some Hilbert space has been adopted 
as the adequate concept for our mathematical modelling of natural processes, 
all further significance is carried by the Hamiltonian/4. Obviously, the proper- 
ties of/;/uniquely determine how the state vector I~) moves around in Hilbert 
space, and it is just in this way that we are provided with the ability of 
predicting the future behavior of the physical system under consideration, 
albeit in a purely statistical sense. Now, one of the crucial properties of 
Schr6dinger's Hamiltonian has been revealed to consist in its Hermiticity (El 
= /~§ which immediately implies certain conservation laws. Indeed, the 
validity of these conservation laws is stringent with regard to both the logical 
consistency of the theory and the experimental evidence. For instance, an 
immediate consequence of Hermiticity is the time independence of the norm 
of the state vector I~): 

d 
d-~ (* I *) = 0 (1.2) 

i.e., the "conservation of probability." However, in view of the statistical 
variety of physical systems, their characterization by a single state vector 
I~) has been found to be too restrictive and one has to resort to the more 
general concept of the density matrix 15. Its equation of motion is readily 
deduced from Schr6dinger's equation (1.1) for the wave function ~ as 

dO [H, lb] (1.3) i h  = 

The corresponding generalization of the conservation law (1.2) for "pure 
states" I t~) to the larger class of statistical "mixtures" described by ~ is then 
found as 

d 
dt (tr ~) = 0 (1.4) 

and the previous case of pure states I~), (1.2), is recovered as a subset of 
the mixtures Ib, (1.4), by putting 

b ~ ~ ~)(~, ~ (1.5) 

In the present context, the decisive point is now that a true mixture 
[being characterized by a sum o f  terms like (1.5)] can never become a pure 
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state. This theorem plays an important role in measurement theory and has 
been verified repeatedly (e.g., Ghirardi et al., 1976a,b). However, the proof 
essentially is based upon the Hermiticity of the Hamiltonian/~ and therefore 
the theorem would not apply within a non-Hermitian approach to quantum 
theory. Thus the question to be dealt with in the present paper arises whether 
such a non-Hermitian approach to quantum theory exists for which the 
transitions from mixtures into pure states and vice versa would not be excluded 
from the very beginning. But on the other hand, would such a non-Hermitian 
approach not invalidate the basic conservation laws of quantum theory? 

As shown in Mattes and Sorg (1994), Ochs and Sorg (n.d.-a), and Sorg 
(n.d.), the logical link between Hermiticity and conservation laws is not so 
stringent as could be supposed by the preceding sketch of Schrt~dinger's 
nonrelativistic quantum theory. Indeed, insisting on Schr'odinger's idea of 
constructing quantum dynamics, one can easily write down a "relativistic 
Schr~dinger equation" (RSE) with a non-Hermitian Hamiltonian ~ [see 
equation (3.8) below] and nevertheless the desired conservation laws do 
apply! Though the physical interpretation of the RSE is rather individualistic 
than statistical, it formally resembles very much its nonrelativistic counterpart 
(1.1). Especially, the relativistic analogue of the density matrix 15 is the 
"'intensity matrix" ~, which then obeys an equation of motion [see (3.1) 
below] which may be considered as the relativistic analogue of the evolution 
equation for the density matrix ~, (1.3). But the conclusion (1.4) to be drawn 
from (1.3) does not hold, on account of the non-Hermiticity inherent in the 
relativistic approach. Thus the question of transitions from mixtures into pure 
states becomes nontrivial and requires detailed analysis. Unfortunately, we 
are not able to present the most general answer to the problem, but we can 
find a negative outcome for some special situation (,,,~ no such transition 
possible). However, our special result strongly suggests its own generaliza- 
tion, i.e., we expect that within RST the mixtures cannot be dynamically 
connected to the pure states in the quite general case. 

But in contrast to the analogous situation in ordinary quantum mechanics, 
the disconnectedness of mixtures and pure states in RST does not prohibit 
a resolution of the well-known paradoxes of the Einstein-Rosen-Podolski 
type (Selleri, 1990). The reason is here that in RST the disentanglement of 
the subsystems of some larger system has nothing to do with the question 
of mixtures and pure states (as in ordinary quantum mechanics), but rather 
is logically referred to the dynamical (block) diagonalization of the relevant 
operators such as, e.g., Hamiltonian ~ ,  intensity matrix ~, etc. [for a discus- 
sion of composite systems see Mattes and Sorg (1995)]. An example for the 
actual occurrence of such a disentangling diagonalization process has been 
presented in Sorg (n.d.) and Ochs and Sorg (n.d.-b). 
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In what follows we briefly define the specific nature of the physical 
situation considered and present a survey of the organization and results of 
the paper. 

First, we have to observe here that the admittance of a non-Hermitian 
Hamiltonian ~r  surely is a necessary condition for the existence of a dynami- 
cal link between mixtures and pure states, but it may not be sufficient. 
Therefore we should additionally consider also two other important types of 
effects, nonlinearity and dissipation, which eventually may become decisive 
for the transmutation of mixtures and pure states. Concerning the dissipative 
effects, we will work over an expanding universe. This means that we first 
review the general form of RST over an arbitrary pseudo-Riemannian space- 
time (Sections 2 and 3). Furthermore, at the end of the paper (Section 8) 
we finally specialize the geometry into a Robertson-Walker universe and 
additionally consider homogeneous and isotropic field configurations. Here 
it becomes immediately obvious that the expansion of the universe acts as 
a kind of friction force with the Hubble expansion rate H as the damping 
"constant." However, this procedure will then clearly demonstrate that dissipa- 
tion is completely unable to produce the transition into pure states. Rather, 
the suppression of the pure states is due to the Hermitian part of the Hamilto- 
nian (i.e., "kinetic fields"). These kinetic fields equip the subspace of pure 
states (geometrically represented by the "Fierz cone") with an infinitely strong 
potential of repulsive nature. As a consequence, the field configuration is 
permanently kept from becoming a pure state. By analogy to Newtonian 
point particle mechanics, it is concretely recognized that dissipation cannot 
help the field configuration climbing up the kinetic potential wall erected 
over the Fierz cone, which itself stands for the pure states (Fig. l). On the 
other hand, it is just the repulsive nature of that kinetic potential Ur which 
makes the pure states unstable, i.e., a small perturbation of a pure state will 
cause its decay into a mixture. 

Next, concerning the nonlinearities, it should be remarked that the ques- 
tion of nonlinear generalizations of conventional quantum mechanics is of 
continued interest (Weinberg, 1989, and references cited therein). In the 
context of our special situation of an expanding RW universe, we may think 
of some nonlinear Higgs potential which usually is made responsible for the 
primeval inflation of the universe (Ochs and Sorg, n.d.-a; Abbott and Pi, 
1986; Kolb and Turner, 1990). As is well known, the point with such a Higgs 
potential is the spontaneous symmetry breakdown, i.e., the field configuration 
adopts its energetic minimum for some nonzero value of the corresponding 
field variable. But for the present discussion of the competition between 
mixtures and pure states, it is instructive also to add another type of nonlinear 
potential ("Fierz potentiaF') which equips the mixtures with an additional 
energy content relative to the pure states (Section 4). The motivation here is 
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that the admittance of non-Hermiticity of the Hamiltonian ~ r  would possibly 
not imply with necessity the transition into a pure state, which, however, 
might then be enforced by equipping the mixtures with an additional energy. 
As a consequence the field configuration should now become a pure state 
whenever it tends to adopt minimal energy. But in any case, the inclusion 
of nonlinearities of both the Higgs and Fierz type requires the discussion of 
the most general type of nonlinearity being compatible with the formal 
structure of RST. This investigation is carried through in Sections 5-7, where 
the question of conservation laws and energy-momentum density in the 
presence of nonlinearities is discussed in detail. Here it is found that the 
constant mass operator ~g of the linear theory [,,,* ~g~i, = (Mc/h). 1] may be 
generalized into a nonlinear (matrix) function of the intensity matrix ,~ (the 
relativistic analogue of the density matrix 0). 

However, the outcome for the nonlinearities is again negative, similar 
to the case of the dissipative effects mentioned above (Section 8). The reason 
is again the same as for dissipation: as long as the nonlinear potentials of 
Higgs and Fierz type are regular everywhere in space-time, they are dominated 
by the infinite kinetic potential Ux over the Fierz cone (i.e., the pure states). 
Thus the repulsive character of that kinetic potential will always dominate 
over the nonlinear Higgs and Fierz potentials, irrespectively of whether they 
are attractive or repulsive; and consequently the mixtures are safely separated 
from the pure states by an infinitely high potential barrier. This barrier is an 
intrinsic feature of RST, independent of any choice of linear or nonlinear 
potential, and therefore it is expected that the present impossibility of transi- 
tions from mixtures into pure states is a rather general result. 

2. INTENSITY MATRIX 

In RST, quantum matter is described by the "intensity matrix" .~, a 
Herrnitian N • N matrix, ~ = ~, where the dimension N of the typical fiber 
of the bundle reflects the "degree of complexity" for the physical system 
(i.e., roughly the particle number). This matrix ~ can be thought of as a 
collection of the "intrinsic densities" A~(x) of the physical system, i.e., 

Ao(x) = tr(~(x).~(x)) (a = 1, 2 . . . . .  N 2) (2.1) 

Here 8o (= ~a) constitute a complete set of Hermitian operators over the N- 
dimensional fiber space. As an example, consider the fiber dimension N = 
2 and write down the intensity matrix ~ as 

~(2) = �89 1 - sjcrJ) (2.2) 

where crJ are the usual Pauli matrices 

crJ'o "~ = -gY~-I + i~kcr z {gY~ = diag(-1 ,  - 1 ,  -1)}  (2.3) 
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The intrinsic densities p, s j (= gJ~sk) are given by 

p = tr(`9(2)- 1) (2.4a) 

sJ = tr(M2)'crJ) (2.4b) 

where the scalar density p, (2.4a), as the trace of the intensity matrix `9, is 
gauge invariant and therefore counts also as an observable (,,,* "extrinsic 
densities"). 

An important subclass of intensity matrices is defined through the "Fierz 
identity" (Sorg, n.d.; Fierz, 1937; Crawford, 1985) 

,gz = p. 9 (p := tr `9) (2.5) 

Obviously this subclass is characterized by the fact that the intensity matrix 
`9 essentially is a one-dimensional projector, i.e., 

`9(x) = ~(x) | ~(x) (,,,* p ---- ~ .  ~) (2.6) 

with t~(x) being some section of the associated N-dimensional complex vector 
bundle over space-time. Observe also that the projector property (2.6) admits 
the existence of some orthogonal operator ~ ["convertor" (Sorg, n.d.)], so that 

~-`9 = `9- ~ -- 0 (2.7a) 

or  

~ . ~  --= 0 (2.7b) 

On the other hand, it follows trivially from equation (2.6) that the "wave 
function" d~(x) is an eigenvector of `9, 

, 9 .0  = P+ (2.8) 

and this immediately transfers to an arbitrary matrix function ~ of the intensity 
matrix #, i.e., 

~(`9)-t~ = X(p)O (2.9) 

where the real function X(p) denotes the same functional dependence as its 
matrix counterpart ~(`9). 

Clearly, when the intensity matrix `9 is nothing else than the collection 
of intrinsic densities and furthermore obeys the special relationship (2.5), there 
must exist certain constraints among those densities just as a consequence of 
that Fierz identity. For instance, return for the moment to the two-dimensional 
case (2.2) and find from the Fierz identity (2.5) 

0 = pz + sJsj -- p2 _ s 2 (2.10) 

Thus, if the extrinsic densities p, s would be accessible to experiment (or at 
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least to observation), one could test whether the physical system admits a 
wave function (O(x) ("pure state") or whether it is a "mixture" (~,~, Fierz 
identity not satisfied). As we shall see, the RST predicts that the pure states 
constitute a somewhat singular and unstable subset of all dynamically possible 
states, i.e., physical systems should always occur as mixtures (possibly close 
to pure states). However, the question of the stability of the pure states is 
decided by the equations of motion, which therefore have to be discussed now. 

3. EQUATIONS OF MOTION 

The problem of how matter behaves under the action of some "field 
strength" . ~  is solved by the field equation for the intensity matrix 3~: 

i 
~ " ~  = hc [ 4 . ~  - ~ - ) ]  (3.1) 

Here, ~ denotes the gauge-covariant derivative 

~ := 0 ~  + [s~, ~] (3.2) 

with the "gauge potentiaf' s ~  generating the field strength ~,~ as usual. 

. ~  = V~sg~ - V~sg~ + [ s~ ,  sg~] (3.3) 

Moreover the (non-Hermitian) "'Hamiltonian" ~ is itself a dynamical object 
in RST (contrary to Schr6dinger's Hamiltonian operator/:/) and the corres- 
ponding field equations consist of the "integrability condition" 

i 
~ - ~ + hc [ ~ '  ~ ]  = i h c ~  (3.4) 

and the "conservation equation" 

i 
~ - ~c ~ "  ~ = -ihc(~g + i~) (3.5) 

Obviously, the Hamiltonian dynamics introduces two new (Hermitian) 
objects, namely the "mass operator" ~ (= ~)  and the "convertor" q3 (= ~) 
and consequently we have to specify their equations of motion in order to 
close the whole dynamical system. 

For that purpose, consider first the convertor q3. For a closed matter 
system (whose rest mass M remains invariant) the field equation for ~3 is 
chosen as (Sorg, n.d.) 

i 
~ 3  = hc (q3. ~ - ~ .  u3) (3.6) 

so that the algebraic constraint (2.7a) is actually obeyed over all space-time 
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if it holds at one event. Evidently, it is just that algebraic constraint (2.7a) 
which, albeit somewhat indirectly, additionally couples the intensity matrix 

to the Hamiltonian ~ , ,  namely via the convertor ~ in the conservation 
equation (3.5). But whenever the mass operator �9 is thought to be independent 
of the densities A a, (2.1), i.e., for the linear theory, 

~ -~ ~,in = (-~)2" 1 (3.7) 

the coupled Hamiltonian and convertor dynamics (3.4)-(3.6) constitutes a 
closed operator system which is completely independent of the intrinsic 
densities A a o r  the wavefunction ~. As a consequence one can solve the 
problem of motion for matter in two steps: (i) first solve the equations of 
motion for the operators ~ and ~, and (ii) then solve the equation of motion 
for the intensity matrix ~, (3.1), with the algebraic constraint (2.7a), or (2.7b), 
as an initial condition. For the special case (2.6) where a wave function t~ 
exists, the corresponding equation of motion for ~ is the "relativistic Schr6d- 
inger equation" (RSE) 

ihcC~t~ = ~ (3.8) 

which can easily be deduced from the intensity dynamics (3.1) (Sorg, n.d.). 
The crucial point is now that, despite the fact that Hamiltonian dynamics 
(3.4)-(3.5) is a nonlinear system, one can have a linear theory by dealing 
exclusively with the wave function +. In order to see this more clearly, 
differentiate once more the RSE (3.8) and find by means of the conservation 
equation (3.5) and the constant mass operator ~li,, (3.7), 

2 

which is nothing else than the linear Klein-Gordon equation (KGE). Obvi- 
ously, there is an intimate correspondence between the linearity of the wave 
equation and the closedness of the operator dynamics. 

However, modern gauge field theories [Salam-Weinberg model (Quigg, 
1983), GUTs (Huang, 1982), etc.] convincingly demonstrate that nonlinear 
wave equations play a relevant role in particle physics and cosmology (Abbott 
and Pi, 1986; Kolb and Turner, 1990). Therefore it becomes adequate to 
conceive the mass operator �9 containing also the nonlinearities due to some 
Higgs potential V,, i.e., we may put 

~ --* ~H = ~ , (~ )  (3.10) 

Here, the Higgs mass operator ~H(~) is some matrix function of the intensity 
matrix ~, e.g., a polynomial 
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2 

~H(~) = 2 --~- (2an~ -- 1) (3.11) 

where aH is a constant length parameter. Such a nonlinear choice for 
generalizes the ordinary KGE (3.9) into the nonlinear Klein-Gordon-Higgs 
equation (KGHE) 

~b~'~t~ + X(p)d~ = 0 (3.12) 

where the ordinary real function XH(p) is deduced from the Higgs choice 
(3.11) as 

[see the arguments concerning equations (2.8)-(2.9)1. Observe, however, that 
in RST one is not forced to apply the Fierz identity. For instance, for the 
fiber dimension N = 2 we can admit a general mixture where the densities 
p and sY of (2.4a) and (2.4b) are not subject to the Fierz condition (2.10). 
Therefore they enter the Hamiltonian dynamics (3.5) in an unrestricted way 
via the intensity matrix ~(2), (2.2), and the Higgs mass operator ~H(~), 
(3.11). However, this implies that the operator dynamics (3.4)-(3.6) is no 
longer closed, but becomes coupled to the intrinsic densities A~. As a conse- 
quence of this feedback between operators and densities the two-step proce- 
dure of the linear theory no longer applies and both quantities must be 
determined simultaneously. 

4. FIERZ POTENTIAL 

Originally, the introduction of a Higgs potential was motivated by the 
idea that the energy of the corresponding field configuration be minimized 
by some nonzero value of the field variable. Through this mechanism, the 
highly welcome effect of spontaneous symmetry breaking could be achieved 
together with all its important implications (Quigg, 1983; Huang, 1982). In 
the present context, one can transfer the Higgs idea to the case of pure states 
within the larger set of mixture configurations. More concretely, the idea is 
that the configuration of lowest energy should be a pure state and not a mixture. 
But this would imply that the mixtures are equipped with an additional energy 
content in comparison to the pure states, i.e., there exists a "Fierz potential" 
VF which is always positive for mixtures, but vanishes for the pure states. 

In order to construct such a potential, we first define the deviation 
operator ~F ("deviator") through 

~F := P~ -- ,,~2 (4.1) 
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The Fierz "deviation" AF as a measure for the invalidation of the Fierz identity 
(2.5) is then defined in a similar manner through 

AF = tr(DF) (4.2) 

To give an example, consider again the case N = 2 and find for the Fierz 
deviation Al: 2) in two dimensions 

A~2): = 2 t r ( D F ( 2 ) )  ----- D 2 - s 2 (4.3) 

which naturally vanishes for pure states; cf. (2.10). 
Turning now to the task of constructing some nonnegative potential VF 

as a function of the deviation A~ one may take 

V v = (McE)a 9 tr{ (~)F) 2} (4.4) 

where a F is a constant length parameter. Since the square of a Hermitian 
operator (D E = DE) safely is a positive operator, the Fierz potential VF of 
(4.4) must necessarily be positive and can vanish only for DE = 0, i.e., for 
pure states. For instance, the Fierz potential in two dimensions becomes 

V~2)(p, s )  = Mc2a 9 t r { o 2 ( # ( 2 ) )  2 - 2 p ( # ( 2 ) )  3 + (#(2)) 4} 

Mc2 ~ 3(p2 

-- ( ) M c 2  ~ 3(Ap)) 2 

(4.5) 

For pure states, we have p = ---s ( ~  A~: 2) = 0) and hence V~: 2) vanishes, 
as expected. 

Clearly the presence of any nonlinear potential term in the theory, such 
as VH or V~ is accompanied by the corresponding nonlinear mass operator 
~H and ~ respectively. So the total mass operator ~ will be found as the 
sum of both contributions 

~(~)  = ~H(#) + ~F(~) (4.6) 

due to the total potential 

V(p, s) = VH(O, s) + VF(p, s) (4.7) 

The Higgs mass operator ~n(#) has already been specified by equation (3.11) 
and the Fierz potential VF by (4.4), but how does one associate the Higgs 
potential Vn(p, s) to the mass operator ~H(#)? Or equivalently, how does 
one find the Fierz mass operator ~F(#) from the Fierz potential VF? The 
answer to these questions comes from a closer inspection of the energy- 
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momentum balance: i.e., we have to consider now the conservation laws for 
the nonlinear theory. 

5. CONTINUITY EQUATIONS 

The simplest conservation law refers to the invariance of certain scalar 
quantities such as electric charge or rest mass (Sorg, n.d.). Associated to such 
a scalar invariant is some current density j~ which has to obey the well- 
known continuity equation 

V~j~ -- 0 (5.1) 

In the true spirit of RST, such extrinsic densities as the current j~ are 
gauge-invariant local observables generated by the associated operators, i.e., 
in the present case of  the "velocity operator" v~ (=  ~ ) :  

j~ = tr(~.v~) (5.2a) 

or, if a wave function ~(x) exists, 

j~ = ~" v~" t~ (5.2b) 

The continuity requirement (5.1) is readily transcribed to the velocity operator 
vr and then reads by use of the equation of  motion for ~, (3.1), or for ~, (3.8), 

i 
~ v ~  + hc [ ] ~ . v ~  - v ~ ' ~ ]  = ~ '  (5.3) 

where the operator q3' annihilates again the intensity matrix 

~",,~ ~ 0 (5.4a) 

or the wave function ~, respectively, 

~ ' - ~  ---- 0 (5.4b) 

quite similarly as for q3, (2.7a)-(2.7b). Consequently q~' should obey again 
the equation of  motion 

i - -  , 
~ 3 '  = hc (~'  " ~  - ~ ' ~  ) (5.5) 

applying to the Hermitian operators [cf. (3.6)], in order to guarantee the 
validity of the algebraic constraints (5.4a)-(5.4b) over the whole space-time. 

One will be interested in keeping the number of dynamical objects as 
small as possible and therefore one will try to identify the new velocity 
operator v~ with some object already present in the theory. To this end, the 
Hamiltonian ~ is split up into its (anti-) Hermitian parts ~ ,  ~ 

~ = hc(~K~. + i~.)  (5.6) 
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and then the continuity requirement (5.3) for the velocity operator v~ reads 

~b~v~, + i[~O', v~,] + 1 ~ ,  v~,} = ~'  (5.7) 

On the other hand, the Hamiltonian splitting (5.6) generates two coupled 
equations of motion from the single equation (3.5), namely one for the "kinetic 
field" ~K~ 

~ + 1~' ,  ~ , }  = ~ (5.8) 

and the other for the "localization field" ~ 

~ + ~ - ~ = - ~  (5.9) 

But this result provides us now with a possible solution for the velocity 
operator %: comparing its field equation (5.7) with that for the kinetic field 
~K,, (5.8), suggests that we take 

h 
vr = Mcc ~r  (5.10) 

with 

h 
qJ' = ~ee~  (5.11) 

This result for the velocity operator v~ exhibits some interesting features 
especially concerning the conservation of rest mass. First define the "four- 
momentum operator" ~ through 

~ := Mcv~ = h ~  (5.12) 

and then split up the integrability condition (3.4) into its (anti-) Hermitian 
parts yielding for @r 

i 
5 ~  - ~ + ~ [~ ,  ~ ]  = i h ~  (5.13) 

and for the localization field ~ ,  

~ , ,  - ~ + i [ ~ ,  ~K~,] + i [ ~ ,  ~ ]  = 0 (5.14) 

Obviously the Hermitian part (5.13) establishes a link between the derivatives 
of four-momentum @~ and field strength ~,~ and thus may be considered 
as the relativistic counterpart of Ehrenfest's theorem for the nonrelativistic 
Schr6dinger theory. Indeed, it has been shown that the well-known equation 
of motion for a classical point particle in an electromagnetic field ~ 
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dpv e 
dr - Mc FF~P~ (5.15) 

where "r is the proper time along the particle world-line, follows immediately 
from the relativistic Ehrenfest relation (5.13) just in the classical limit (h 
0) (Mattes and Sorg, 1995). But, clearly, the classical Lorentz force on the 
right of (5.15) does not change the rest mass M of the system (see Section 
7). On the other hand, the full RST does admit the change of rest mass M 
(particle creation/annihilation), which may be readily seen by defining the 
mass current tc)/~ through 

( c~  := t r ( ~ . ~ , )  = Mc.j~ (5.16) 

and computing its source (sink) as 

V~ (c)/~ _..,_ h tr(., ~ -~) (5.17) 

Thus there is no conservation of rest mass M in RST if the algebraic constraint 
(2.7a)-(2.7b) does not hold. In this sense it becomes plausible that the 
convertor ~ will govern the "conversion" of rest mass into gauge field energy 
and vice versa (particle creation/annihilation), which, however, cannot be 
described by the "classical approximation" (5.15). 

Let us stop here for a moment in order to make the present results 
concrete by means of our previous example of fiber dimension N = 2. The 
kinetic and localization fields ~Kr ~ of (5.6) may be decomposed here with 
respect to the N 2 = 4 Hermitian operators { 1, (rJ } as 

~K~) = K~. 1 + Kjr (5.18a) 

, ,~) = L~. 1 + Lj~GrJ (5.18b) 

and similarly the convertor ~ adopts the special form of a projector (~3 2 = 
G~, G = trY): 

~(2) = �89 + gjqJ); sj = sgj, g% = - 1 (5.19) 

just on account of the algebraic constraint (2.7a)-(2.7b). This constraint is also 
responsible for the fact that the intensity matrix ~(2), (2.2), must necessary be 
a projector 

~(2) = �89 - gj~J) (5.20) 

and thus both matrices ~ and ~ obey the Fierz identity (2.5). With these 
arrangements, the mass current density (c)/~ in (5.16) reads 

(cff~ = h(pK~ + sJKj~) (5.21) 
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and its source is found from this by means of the Hamiltonian dynamics 
(5.8) and of the density dynamics as 

V~ ~c)/r = �89 - s) (5.22) 

From here we again recognize that the presence of  a nontrivial convertor 
~(2) (i.e., G ~ 0) implies the Fierz identity (i.e., P - s). Thus for our 
subsequent discussion of the mixtures p 4= s we must put the convertor ~J(2) 
identically to zero! 

6. T H E  G A U G E  FIELD 

Evidently the preceding continuity equations are completely indifferent 
to the presence of nonlinearities, i.e., the central equation (5.1) is valid 
irrespective of whether we want to apply a nonlinear mass term ~(~) ,  (3.1 1), 
or prefer to have a linear theory ~ , ,  (3.7). We want to demonstrate the extent 
to which this indifference will persist when turning now to the coupling of 
the gauge and matter fields. Considering the general belief that the sources 
off~ of  the field strength ~ ,  (3.3), should be composed of  the matter field 
t~(x), or more generally, intensity matrix ~(x), one writes down the Yang-Mills 
equations for ~ as usual 2 

~'~;t,~ = 4"n'et~ (6.1) 

where et = g21hc is the fine structure constant for the corresponding type of 
interaction. The problem is now to construct the "gauge current" off~ in terms 
of the intensity matrix 4. 

For that purpose one should first consider the general constraints to be 
obeyed by any gauge current o~. The most important constraint comes from 
the bundle identity for the curvature ~ :  

[~• - ~ o ~ b ~ ] ~ ; ~  ------ [~x , , ,  ~;~,~] - R ~ , ~ o , ,  - R~xo~'~.o ( 6 . 2 )  

where Rgx,, denotes the Riemannian curvature tensor of  the underlying space- 
time. The double tensor contraction of  this identity yields 

~'~"~r162 -- 0 (6.3) 

and this immediately implies the generalized continuity equation for the 
gauge current ~ , ,  

~ ,  -- 0 (6.4) 

2Since the physical concepts of "field strength" and "current density" have been defined 
independently of the geometric notion of "bundle curvature," one needs some dimensional 
constant in order to fit together the physical and geometric quantities when they appear in 
the same equation; see, e.g., equations (6.15a)-(6.15c). 
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provided we want to insist on the Yang-Mills equations (6.1). Thus, the 
problem is now to construct the gauge current )~  in terms of the intensity 
matrix ~ in such a way that the identity (6.4) is automatically satisfied. In 
order to find the corresponding ansatz for )~, both the curvature ~ and 
the gauge current ~ are decomposed with respect to the (anti-Hermitian) 
generators r a of the holonomy group (for the connection M~,) as 

~io, v = Far "a (6.5a) 

) r  = j~a  "a (~l~ = A ~ )  (6.5b) 

Denoting the structure constants of the holonomy algebra by C~ b, we have 

[~, ~'] ~ = Cc ~ (6.6a) 

5~r  a = 0 (6.6b) 

The Yang-Mills equation (6.1) establishes now the corresponding link for 
the curvature and current coefficients F~r j~r as 

D~F,~t,,, = 4,rraja v (6.7) 

and the gauge continuity equation (6.4) reads 

O~162 = 0 (Ooja~, : =  V~jav + CatWAb~Jcv) (6.8) 

But now the construction of the desired gauge current Jar, is easily 
achieved by reference to the corresponding gauge velocity operator v,~, 

(6.9) Jaw = tr(,~ . Va,.) 

to be subjected to the corresponding source equation 

{ (  i )} 
tr .~. ~ ' V a ~  + h c  [~,~'Va~ -- Va~." ~,"1 = 0 (6.10) 

This requirement is immediately deduced again from the continuity require- 
ment for Ja~, (6.8), by means of the field equation for the intensity matrix 
~, (3.1). Since the arguments run here quite analogously to the previous case 
of the original continuity equation (5.1), we can apply the same reasoning 
again and obtain from the present requirement (6.10) 

i ~ 
~lJa l~  q- h c  [~ls'" lla~ - llalx" ~ ]  : ([Ta' ~] + i{'ra, ~}) (6.11) 

provided the gauge velocity operators va~, are introduced as follows: 

i 
Var - 2Mc2 { ~ t , " r a  + ' r a " ~ }  (6.12) 
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Thus the original continuity requirement (6.8) becomes 

h 
0 = D~j,w. = 2M----~ {tr([~, ~]-%) + i tr({~3, 3~}-%)} (6.13) 

and this requirement can actually be satisfied for the following reasons: 
(i) The mass operator ~ is chosen to be a matrix function of the intensity 

matrix ) [i.e., ~g = ~())] :  

[~(,~), ~1 -- 0 (6.14) 

[cf. (3.11)1. 
(ii) The convertor ~3 and intensity matrix g are assumed to annihilate 

each other; cf. (2.7a)-(2.7b). 

Summarizing, we see that we have achieved our aim to construct the 
gauge currents Ja~ in such a way that they automatically obey the continuity 
requirement (6.8) and thus can be used as the sources for the field strength 
~ ,  (6.7). Let us demonstrate the consistency of the present result by consid- 
ering two simple examples: the electromagnetic and the weak interactions. 
Concerning electromagnetism, the original velocity operator v~, (5.10), is 
nothing else than a special case of the gauge velocity operators va~, (6.12); 
this is readily seen by simply taking the holonomy generator as % --4 - i -  1. 
Since this generator can be assumed to be due to the ~(1)  gauge group of 
ordinary Maxwellian electromagnetism (with fine structure constant ct ---> e2/ 
hc), we put 

ie 
~ m - h c  F~ -  1 (6.15a) 

ie 
~ =~ - h c  A~-1 (6.15b) 

F ~  = c3~A~ - c3~A~ (6.15c) 

and thus the corresponding current j~, (5.2a)-(5.2b), adopts its original elec- 
tromagnetic meaning with the Yang-Mills equation (6.1) reducing to the 
original Maxwell equation (over flat space-time) 

O~Fv.~ = 4~r (elff~ (6.16) 
c 

The electromagnetic current (el)/~ is given in terms of the associated convection 
current Jw (5.2a)-(5.2b), as 

e (c)/~ (6.17) 

Consequently, in Abelian electrodynamics the mass current (c)j~ is propor- 
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tional to its electromagnetic counterpart (enff~. Moreover, the gauge-covariant 
derivative of the wave function O(x) becomes 

ie 
= 0~d: - ~cAr (6.18) 

which is nothing else than the well-known prescription of "minimal coupling" 
of conventional quantum mechanics 

e 
P~ --> P~ - c A~ (Pt, = ihO~) (6.19) 

Similarly, for the weak interactions we use the gauge group SU(2) and 
therefore we put here (for fiber dimension N = 2) 

x a ~ "rJ = -�89 "j, j = 1, 2, 3 (6.20) 

which yields for the gauge velocity operators (6.12) 

�9 h {o'J, ~ }  + i h vJ~ = 4---~c ~ [or J, ~ ]  (6.21) 

Strange to say, these gauge velocity operators v j depend also upon the 
localization field ~ , ,  whereas the original velocity operator v~, (5.10), is 
linked only to the kinetic field ~K w Naturally one would expect that the notion 
of "velocity" is in some sense complementary to the concept of "localization"; 
but the general form (6.12) for the gauge velocity operators va~ is mandatory 
for the validity of the gauge continuity relation (6.8) and therefore we have to 
accept the dependence of the Va~ upon ~ .  More concretely, the decomposition 
(5.18a)-(5.18b) of ~ and ~s with respect to the Hermitian operator basis 
{1, crJ } readily yields for the weak velocity operators v j ,  (6.21), 

h 
v~ - 2Mc ( - K ~ - I  + K~-crY - ~lLlr (6.22) 

i.e., the corresponding gauge current jk, (6.9), becomes 

h 
J~ = 2M-----c (sk" Kr -- p. K~ - e~Ltr j) (6.23) 

As a confidence test for this result, one would like to explicitly compute 
the left-hand side of the continuity equation (6.8); but for this process one 
first needs the dynamical equations for the intensity matrix #(2), (3.1), as 
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well as for ~r (5.8), and ~r  (5.9), in component form. Here, the density 
dynamics is easily deduced from equation (3.1) as 

O~p = 2(pL~ + sJLj~) (6.24a) 

D~sj = 2~Kj,~st - 2(pLj~ - sjL~.) (6.24b) 

and similarly the Hamiltonian dynamics (5.8)-(5.9) reads in coefficient form 
for the kinetic field 

17r + 2(Lr  - LJ~Kjr = �89 

Dr + 2(Lr + KSLjr = - �89 

(6.25a) 

(6.25b) 

and for the localization field 

Vr + (L~Lt, - Lit'Lit,) - (Kt'Kt, - KJr ) = - X  (6.26a) 

D~'Ljr + 2(L~'L~r - Kr = - X j  (6.26b) 

Thus the continuity relation (6.8) actually may be verified by covariantly 
differentiating the preceding gauge current j~, (6.23), and using the present 
derivatives (6.26a)-(6.26b), which first yields 

h 
O~j~ = 2--~c tr(~ -~.  o a') (6.27) 

just in agreement with the general requirement (6.13). But now we remember 
again the algebraic condition (2.7a) and thus we see that the desired continuity 
relation (6.8) really holds, quite similarly to the case for the original continuity 
equation (5.17). Obviously the algebraic relationship (2.7a)-(2.7b) plays a 
central role also for the conservation laws, now only for the deduction of the 
KGHE (3.12). This effect will show up even more distinctly when considering 
subsequently the energy-momentum exchange between the matter and 
gauge fields. 

The energy-momentum density of the weak gauge fields is as usual 

(6.28a) 

or in terms of the curvature coefficients Fa~x, (6.5a), 

_ h e (  ' ) 
(F)Tt'~ 4'trot F"~xF""~ - -4 g~vFa~176 (6.28b) 
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[putting "ra'r b + q.b~ = (1/N)g~. 1]. Consequently, the source of this density 
(F)T~, becomes 

V t~ (F)To. v = hc tr{~;v~,.off x + ~x-~vx } (6.29) 

= -hcFahda~ : =  --~L) L 

where the Yang-Mills equations (6.1) have been used together with the well- 
known Bianchi identity 

~ x ~  + ~ t , ~ •  + ~ x ~  =- 0 (6.30) 

The significance of the Lorentz force density (L)fv, (6.29), as the source 
of the energy-momentum density tF)Tt, ~ of the gauge field, now becomes 
immediately evident: for a closed system of matter and gauge fields the total 
energy-momentum as the sum of the gauge part (F)Tt, ~ and matter part (M)T~, 
must be conserved; i.e., 

V~((F)T~ + (M)T~,) ~ 0 (6.31) 

But since the gauge part itself is not conserved individually [cf. (6.29)], this 
must be true also for the matter part, 

V t' (M)T~ = (L~'le v = --V la" tF)Tt, ~ (6.32) 

in order that the total system can be closed. These results may suggest that 
it is just the generalized Lorentz force r which is responsible for the energy- 
momentum exchange between both subsystems. However, we shall readily 
see that this conjecture is not completely correct and the reason is that the 
Lorentz force cannot describe those exchange processes which are due to 
the materialization of gauge field energy (particle creation). In fact the Lorentz 
force (L)fv  does leave invariant the rest mass of the material subsystem, as 
we shall readily see by a closer inspection of its energy-momentum density 
(M)Tr [see also the discussion of the classical equation (5.15)]. 

7. E N E R G Y - M O M E N T U M  DENSITY FOR MATTER 

Besides the current (5.2a)-(5.2b) there emerges a further extrinsic den- 
sity (i.e., observable) of matter and this refers to the energy-momentum 
content (M)T~v. Thus we have to specify now the energy-momentum density 
(M)T~,~ of the nonlinear field system. As usual, the corresponding density is 
traced back to the "energy-momentum operator" (M)~- , i.e., we put 

(M)T~ = tr(~-~M)~-t,~) (7. la) 

or, if a wave function O(x) exists, 

(M)T~v = ~" (M)~-~v" t~ (7.1 b) 
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The operator (M)~ffl~ v has  already been specified as (Sorg, n.d.) 

(M)~- )~  - -  1 
2 M c  a [~ )  . ~ + ~ .  ~)~ _ g )~(~) , .  ~>, _ 0"td)] (7.2) 

where the new operator ~ (,,~- "potential operator') still has to be determined. 
Clearly it is related to the mass operator ~ and therefore is also to be 
considered as a (matrix) function of the intensity matrix ~: ~ = ~(#) .  
But for the linear theory, when ~ essentially simplifies to unity, (3.7), the 
corresponding 0-td is also reduced to 

~ ~ ~ n = ( h c ) 2 ~ l i n  = (Mc2)  2" 1 (7.3) 

Further information about the operator ~ is obtained by considering the 
" force  dens i t y"  f~, which is the source of  energy-momentum as usual, 

V ~' (M~T~ = f~ (7.4) 

The force density f~ is again written in terms of the force operator f~ as 

f~ = tr(,9. ~)  (7.5a) 

o r  

f,, = ~ .  ~ . ,  (7.5b) 

The desired link of  the mass and potential operators ~,  ~-J is now obtained 
by demanding that the force density f~ be nothing else than the well-known 
Lorentz force (or its non-Abelian generalizations). Thus, in order to transcribe 
this demand into some equation connecting ~ and ~ we look for the source 
of  the energy-momentum density (M)Tr (7.1a), and find by means of  the 
Hamiltonian dynamics (3.4)-(3.5), 

Vl~ (M)T~ v = tr{~(od~ ~ (M)~-IL v + [~)L.  (M)~-lx u -- (M)~'I~u. ~1~])} 

ih 
- 2 M c  tr (#(~ ' )*"~)*"  + "~)~"'~')~)) 

+ h 1 
tr(#.  { ~ J - ~  + ~ . ~ J } )  + ~ t r { , 9 . ( ~  

2 M c  2 M c  ~ 

i + 7 -  [ ~ "  (0~ _ (hc)2~) _ (0~ _ (hc)2~e)~g~])} 
?tc 

(7.6) 

Comparing this result to the expected form (7.4), we see that the general 
force density f~ will consist of at least two parts, 

f~ = (L)f~ + (C)f~ (7.7) 
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Here, the Lorentz force density (L)fv is given by 

ih 
<L~ = _ _  tr(,r [ ~ , .  ~ v  + - ~ , "  ~ ] )  (7.8) 

2Mc 

and similarly the conversion force density <c)f~ is defined through 

h 
(c)f~ = 2---~c tr(3~. [q3. ~ + ~-~3] )  (7.9) 

Properly speaking, there emerges also a third force term on the right-hand 
side of the source equation (7.6), containing the �9 and ~ operators, but this 
part will be required to vanish in order to get the desired link between the 
mass operator ~ and the potential operator o-td. In what follows we shall gain 
some further insight into RST by a closer inspection of any one of the three 
force terms. 

First consider the convection force (c)f, (7.9). This part of the total force 
f~, (7.7), contains the convertor q3 which is responsible for matter creation 
and annihilation, i.e., for a change of the rest mass of the physical system 
(Sorg, n.d.). Such a change of the rest mass naturally leads to a kind of 
inertial force, which is best seen by considering the equations of motion for 
a point particle (5.15). There the classical four-momentum p+, of the particle 
may be rewritten as the product of its rest mass M and four-velocity ur,, 

dx, 
p ,  = Mcu , ,  u ~ - uO'u,. = 1, dr  = ~/g+,,Ax"dx" (7.10) 

d r '  

Thus, the rate of the change of p~, is given by two terms 

dp+ c(dM   7 - \ a t ]  + Mc ar (7.11) 

where the first one refers to the change of rest mass M and the second one 
to the four-acceleration duJdr .  If only the Lorentz force is acting upon the 
particle, just as shown in equation (5.15), the rest mass must be a constant, 

d (Mc) 2 _-- d ~ -~T (P"P") = 0 (7.12) 

[hint: multiply the classical equation of motion (5.15) by pV]. On the other 
hand, when the rest mass of the physical system is changed, there must be 
added a conversion force term to the Lorentz contribution on the right of 
(5.15) for the sake of consistency. The same reasoning also applies to the 
source of energy-momentum density (ra)T,v, (7.4), in our present fluid- 
dynamic approach to quantum mechanics, where the additional conversion 
force (c)fv has already been identified in equation (7.9). 
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Next, the rest-mass-conserving Lorentz force (L~v ,  (7.8), has to be dis- 
cussed. Introducing here the decomposition of the field strength ~ (6.5a), 
yields for the Lorentz force operator in terms of the velocity operator Var 
(6.12), 

(L)~ v - -  ih 
2Mc ( ~ ' ~ ' ~  + ~ "  ~ )  (7.13) 

= h c F ~ v ~  

Obviously this is nothing else than the operator generalization of the classical 
Lorentz force on the right-hand side of equation (5.15). As a consequence, 
the Lorentz force density ~L)f~, (7.8), becomes, in terms of the gauge currents 
A~, (6.9), 

~L)f,, = hcF,~,,ja~ (7.14) 

Clearly this result is just what one expects to be the non-Abelian generalization 
of the original Lorentz force in ordinary Maxwellian electromagnetism. The 
latter case is recovered here from our general result (7.8) by means of the 
Abelian substitutions (6.15a)-(6.15c) 

1 - ~c)j~ ~L~f~ ~ _ Fr t*')j r e c Mcc Fr (7.15) 

Obviously, this is just the fluid-dynamic counterpart of the fight-hand side of 
the classical equation of motion (5.15) and thus the original Bohm hypothesis 
receives support from RST according to which the energy-momentum content 
of a localized quantum system follows the classical path (= integral line of 
mass current) to lowest order of approximation [for relativistic quantum 
corrections to the classical path see Mattes and Sorg (1995)]. 

Finally, the third force term on the fight of the source equation (7.6) 
has to be considered. This term is due to the presence of the potential operator 
0-id in the energy-momentum operator ~M)~- , (7.2), and therefore gives rise 
to the corresponding potential V in the density tM)Tr (7.1a)-(7.1b), i.e., 
we put 

1 
(V)Tl i  v - -  2Mc2 gr tr(~. ~ )  := Vg,~ (7.16a) 

1 
V = 2Mc--- H tr(~. ~)  (7.1 6b) 

For instance, if the mass operator ~ is the sum of two terms [as in equation 
(4.6)], then 013 will also be additive, 
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~(~ )  = ~H(,, ~) + ~V(., ~) (7.17) 

which carries over to the potential V, (4.7), i.e., 

V = VH + VF (7.18) 

More concretely, the Fierz potential V~ (4A), due to the hitherto unknown 
mass operator ~F is found from the general relationship (7.16b) as 

1 
VF = 2 M c 2  tr(~. ~F) (7.19) 

Identifying therefore this expression with the previous choice (4.4) for V~ 
we readily obtain the corresponding potential operator ~F as 

~F(P, ~) = 2 ( M c 2 ) 2 a 9 ~ - l ( ~ r : ) 2  

= 2(Mc2)2a9(,~3 _ 2p~2 + p2~) (7.20) 

However, the inverse process of finding the Higgs potential VH associated 
to the Higgs mass operator ~H, (3.11), is not yet possible because we do not 
know how to compute the potential operator ~ in terms of the mass operator 

(and vice versa). Similarly. up to now we cannot compute the Fierz mass 
operator ~F in terms of its potential operator 9Jr. (7.20). In order to find the 
missing link between ~ and ~ we adopt the postulate that matter does not 
feel any further force besides the Lorentz force (L)f~, (7.8), and conversion 
force (c)f~, (7.9). As a consequence of this postulate, the third force term on 
the right of the source equation (7.6) must vanish: 

0 ~ tr ~.  ~ + hc [ ~ "  (N - (hc)2~f) - (~ - (hc)2~)" ~ 1  

(7.21) 

Since the potential operator ~ has been adopted to be a (matrix) function of 
the intensity matrix ~, cf. (7.20), the derivative of ~(~)  in equation (7.21) 
can be traced back to the derivative of ~, which itself may be taken from 
its equation of motion (3.1). Thus, the postulate (7.21) establishes the follow- 
ing link between ~ and ~:  

~ ( , ) +  , .0~+03 ~ 1 - t r ( ,  . ~ p )  = (hc)2~ (7.22) 

Here, 9J(~, p) is understood as an analytic matrix function of 3 ~ [e.g., the 
polynomial (7.20)]. 
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For instance, applying the present result (7.22) to the Fierz case (7.20) 
readily yields for the Fierz mass operator ~ 2 )  in two dimensions (N = 2) 

[2Mc~ 2 9[- 1 ] 
gF(2) = [---~--) a F [ ( p ' l  -- 2.,~)~F + ~ p'A[=2)'I 

- I  

2 

_- ( )a9 1 +s,o,,  723, 

i.e., the Fierz mass operator ~F vanishes identically for a pure state, where 
~F = 0 and thus the Fierz potential can be felt only by a mixture! Concerning 
the inverse problem of determining the potential V, (7.16b) for given mass 
operator ~,  we may consider the Higgs case ~fH, (3.11), and again find from 
(7.22) the associated potential operator ~ 8 as 

9Jr~ = 2(McE)2(a3,, ~ - 1) (7.24) 

Consequently, the desired Higgs potential (7.16b) becomes 

V~)~McZaH P - - ~  - - 2 ( 9 2 - s 2 )  4a~ (7.25) 

Including as usual some cosmological term 

M c  2 
~~ - 4a~ g~v (7.26) 

into the energy-momentum tensor tM)T~, (7. la)-(7,  lb), yields finally for the 
Higgs potential 

V~)(p, s) = Mc2a3n p -- ~ -- ~ (p2 _ s 2) (7.27) 

For pure states (p = s), the Higgs potential VH is nonnegative and is minimized 
by the nontrivial vacuum density Pe = l/(2a3H); however, the full potential 
Vn, (7.27), can become negative for a mixture (p > Is l), which indicates 
that pure states may decay into mixtures in order to minimize the Higgs 
energy [in contrast to the positive Fierz energy, (4.5)]. 

8. TRANSITIONS BETWEEN MIXTURES AND PURE STATES 

According to the nonunitary space-time evolution of  the intensity matrix 
(or wave function 4, respectively), it may become possible that the physical 

system is a mixture in one region of space-time but is in a pure state in some 
other region. In particular, such effects may occur with the progression of  
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"time" (to be defined suitably), i.e., we can consider systems which have 
been mixtures in the past and will become pure states in the distant future. 
Clearly, such a behavior would not be possible in ordinary quantum mechanics 
due to the postulate of strictly unitary time development of closed systems. 
But in RST, the tendency of minimizing the Fierz potential V~ (4.5), drives 
the physical system toward becoming a pure state. On the other hand, the 
Higgs energy V., (7.27), can be decreased by leaving the pure state and 
passing over to a mixture. Consequently, it will be interesting to inspect 
which of these tendencies will dominate and therefore will determine the 
nature of the physical state. Subsequently we shall study these questions for 
fiber dimensions N = 2, but the results are expected to hold for any N. 

In order to get some preliminary feeling for what happens, it may be 
instructive to consider the four-dimensional configuration space D4 of the 
densities p, sJ (2.4a)-(2.4b) (see Fig. 1). This space D4 = { p, s j } is the union 
of the sets D4 = D_ U D+ U Do td CF and carries a pseudo-Euclidean 
structure with the Fierz deviation A~ 2), (4.3), as the Minkowskian metric. The 
characteristic feature of such a D4 is its subdivision into four submanifolds: 

(i) The "Fierz cone" CF = C~ +) U C~ -) as the union of the "forward 
cone" C~ § and the "'backward cone" C~ -~, 

C~+): p =  Isl (8.1a) 

C~-): p = -- Is l  

(ii) The interior D+ of C~: +~, 

D+: p > Isl (8.1b) 

(iii) The interior D_ of C[ -), 

D_: p < - I s l  (8.1c) 

(iv) The outside Do of C~ 

Do: - I s l  < p < + ls l  (8.1d) 

The question to be studied now is whether the Fierz cone CF (or even 
C~ § is an "'attractor" in the sense that any initial density configuration { p~,, 
s{,} develops toward CF (or even C~§ If such a configuration path p = 
p(0), s j = s J(0) tends to terminate at some point of C~ +), one will finally find 
a pure state whose scalar density p = tr # is trivially positive (,,~- p ------ ~- ~). 
Since the scalar p enters also the physical densities, e.g., the mass current 
(c)j~, (5.21), the question of its positivity (p ~ 0?) is found to be of some 
significance! Moreover, one wants to know whether the configuration paths 
can also traverse the Fierz cone CF or whether they must always stay within 
their initial compartments D+, Do (as is the case for the free-particle world 
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fl 

<0 

" ( ,o--~)<0 

~ - ) :  p = -I,1 

Fig. 1. Density configuration space. 

lines in special relativity, which remain either inside or outside the correspond- 
ing light cone). 

First, let us consider the problem of cone traversion. From the field 
equations (6.24a)-(6.24b) for the densities {p, s j} one easily deduces the 
field equation for the Fierz deviation A~ 2), (4.3), 

a~A~ 2) = O~(p 2 - s 2) = 4L~(p 2 - s 2) (8.2) 

On the other hand, the Hamiltonian coefficient Lr (5.18b), can be shown to 
be the logarithmic gradient of  some "amplitude field" L(x), i.e., 

O~L (8.3) 
L ~ =  L 

Indeed, this can be readily verified by writing down the integrability condition 
(3.4) separately for the kinetic field ~Kr (5.18a), 
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V~K~ - V~K~ = F ~  (8.4a) 

-fFj~ (8.4b) 

and similarly for the localization field ~r (5.18b), 

V~L~ - VvL~ = 0 (8.5a) 

D~Lj~ - D~Lj~ - 2~(Kk~,Lt~ - K l c v L l p , )  = 0 (8.5b) 

Here, equation (8.5a) immediately implies the desired gradient relationship 
(8.3). But once this gradient relation has been established, the field equation 
for the Fierz deviation A~ 2), (8.2), is readily integrated to yield 

4 

This important result immediately provides the answer to the question raised 
above: if the density configuration initially is inside the Fierz cone [A~2~) n "= 
A~2)(xi,) > 0], then it remains inside (D.  U D_) for all events x of space- 
time which can be connected continuously with the initial event xi, [the zeros 
of L(x) are discussed below]. Evidently, an analogous result holds also for 
the outside region Do. Conversely, a pure state always must extend over the 
whole (connected component of) space-time (A~2~, = 0). 

However, these results do not forbid that the density configuration 
asymptotically, i.e., for 0 --~ ~, approaches some point of the Fierz cone (off 
the vertex p = s = 0), i.e., the physical system asymptotically would become 
a pure state along some infinite path in space-time. In order to see this more 
clearly, we once more start from the field equations (6.24a)-(6.24b) for the 
scalar fields p and s (: = ~--sj#) 

n 
0~p = 2(pL~ + sLy) (8.7a) 

n 
O~s = 2(pL~ + sLy) (8.7b) 

wherenwe have introduced the logarithmic field L~ and associated amplitude 
field L(x) quite analogously to the preceding case (8.3), 

n 
n O~L 
L~ = gJLj~ = n (8.8) 

L 

Adding equations (8.7a)-(8.7b) immediately yields the sum of density scalars 
n 

in terms of the amplitude fields L, L as 

2 n 2 
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In a similar way, the subtraction of equations (8.7a)-(8.7b) leads to 

\ / 
(8.1o) 

Of course, both results (8.9) and (8.10) are in agreement with the previous 
form (8.6) for the Fierz deviation A[: 2) -= (p + s)(p - s) = p2 _ s 2. But now 
observe that it may be well possible that along some infinite path in space- 
time, both scalars p and s asymptotically tend to the same value p ~ s (4: 
0) if only the first amplitude field L(x) tends to zero [L(x) ~ 0] and the n 
second one tends to infinity [L(x) ~ co] so that their product remains finite 

_ 

"-~inJ ~k~in ,] Pin + Si~ Pin + Si"""~ 
(8.11) 

Indeed, with these presumptions equation (8.9)-(8.10) predict the emergence 
of a pure state (13 = s) and the Fierz deviation A~ 2~, (8.6), will vanish as 
required. Thus, the transition of a mixture into a pure state becomes possible 
from the purely kinematical point of view. 

But now the question arises whether these transitions are admitted also 
from the dynamical viewpoint. Here, a rigorous proof of their existence would 
surely be very difficult for the most general situation; therefore we want to 
consider a very special example which, however, admits certain conclusions 
concerning the general result. Our choice of an example refers to a homoge- 
neous and isotropic field configuration over an expanding RW universe. The 
reason is here that the high symmetry of such a field configuration reduces 
the space-time evolution to a pure problem of time development. This arrange- 
ment simplifies all the preceding field equations into ordinary differential 
equations in terms of cosmic time 0. Consequently, we shall specify the initial 
values of the dynamical variables at the initial time 0i, and then follow their 
time evolution in order to see whether the mixture asymptotically becomes 
a pure state in the distant future (0 --~ oo). 

For an investigation of this kind, we first have to specify the dynamical 
equations in their RW-symmetric form, where all scalar fields become exclu- 
sive functions of cosmic time 0 and vector fields become proportional to the 
Hubble flow b~ (Ochs and Sorg, n.d.-a). For instance, the results (8.9)-(8.10) 
would now read 

2 N 2 
(p + s)(O) = (p + " ] ] (8.12a) 
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7 ( o  - : ( .  - ) (8.12b) 

Similarly, the kinetic and localization coefficients (5.18a)-(5.18b) must look 
as follows: 

K, = Kb~ (8.13a) 

Kjv ~ = Kjbv. (8.13b) 

Lr = Abv. (8.13c) 

Lj~ = Ljb~ (8.13d) 

where the scalar prefactors are again homogeneous scalar fields [i.e., K = 
K(0), etc.]. Next observe that the intrinsic densities s J, (2.4b), define a pre- 
ferred direction in the corresponding fiber space, and for the subsequent 
discussion it will be helpful to decompose all SO(3) gauge objects with 
respect to that direction, i.e., we put 

n 
Kj = -g /K + (• (8.14a) 

f'l 
Lj = -g jA + (l)Lj (8.14b) 

N f'l 
Thus, K and A are the projectors of the kinetic and localization coefficients 
{Kj, Ly} onto the preferred direction 

f3 
K = MKj (8.15a) 

f'l 
A = sJLj (8.15b) 

In this way, the preferred direction separates the variables into two subsets, 
N N 

namely the "longitudinar" objects {K, K, A, A} and the "transverse" 
quantities {K~, L~, S j_, N_L} to be defined as follows: 

K~ := -(• (8.16a) 

L~ := -(•177 (8.16b) 

S• := (-L)u'(x)Kj (8.16c) 

N• := e~tKkgtLJ (8.16d) 

After these purely kinematical adaptations to the RW symmetry, we can 
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now turn to the corresponding field equations. First, the density dynamics 
(8.7a)-(8.7b) is rewritten as follows: 

n 
b~a.p := Ib = 2(p'A + s 'A)  (8.17a) 

n 
b~O~s := ~ = 2(p'A + s.A) (8.17b) 

Moreover, the gradient relations (8.3) and (8.8) read now 

A = L/L (8.18a) 

n f i n  
A = LIL (8.18b) 

and consequently the relationships (8.12a)-(8.12b) between densities {p, s} 
n 

and amplitude fields {L, L} are immediately recognized as the solutions of 
the density dynamics (8.17a)-(8.17b). Next, the system of conservation equa- 
tions (6.25a)-(6.26b) yields the equations of motion for the longitudinal 
variables 

A + ( 3 H + A ) A + ~ 2 - ~ Z - K  2 + X = K  2 - L ~  (8.19a) 

n ( ) 
+ ( 3 H + 2 A ) A - 2 K . K + X = 2  N• + -pL2~ (8.19b) 

s 

n n 1 
k + (3H + 2A)K + 2A-K - ~ G = 2S j_ (8.19c) 

nK n 1 p 
+ ( 3 H + 2 A ) K + 2 A - K + ~ G =  - 2 - s S i  (8.19d) 

and for the transverse variables 

( L~ = - 2  3H + 2A + 2 P_ L 2 - 4 ( K . S •  + A.N• + 2(-L)U.Xj) (8.20b) 
s 

S• = - 2  3 / - / + 2 A + ~ X  S~_ + 2K(L~ - K~)  + 2 N• + s J-} 

- (( ' )KJ'Xi)  (8.20c) 
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~ o 
R• = - 2  3H + 2A + s .N• - 2 (A -K~  + K ' S D  - ~lKk~tX~ (8.20d) 

s 

Observe that this somewhat complicated system lives over a RW universe 
with Hubble expansion rate H, but it can be simplified somewhat if we think 
of the mass operator 

n 
= X.  1 + Xj(rJ (X := gJXj) (8.21) 

as composed of a Higgs part ~H, (3.11), and a Fierz part, ~ (7.23), which 
both have no transverse component (i.e., (x)Xj -- 0). Thus all terms containing 
the "space part" Xj of the mass operator can be omitted in the transverse 
dynamics (8.20a)-(8.20d). Moreover, since we want to follow the time evolu- 
tion of a mixture, the conversion density G must be put equal to zero; see 
the remark below (5.22). 

But now with the complete dynamics at hand, we can effectively attack 
the problem of asymptotic transitions into pure states. For that purpose, we 
will set up a closed differential equation for the trajectory { p = p(0), sJ = 
sJ(O) } in the density configuration space (see Fig. 1), and from this differential 
equation we will recognize that the corresponding density trajectories can 
never terminate upon the Fierz cone representing the pure states. This means 
that a mixture can never become a pure state. 

First observe that there exists a close relationship between the densities 
n 

{p, s} and the amplitude fields {L, L}, which is most clearly expressed by 
the corresponding solutions (8.12a)-(8.12b). On the other hand, a similar 
relation between the kinetic fields {K, K} and the densities {p, s} apparently 
does not exist. Consequently, it may seem somewhat hard to eliminate the 
kinetic fields for arriving at the desired closed equation for the densities. But 
in order to manage this problem, we refer to the results of Sorg (n.d.), where 
it is shown that in an expanding universe (,,,'- positive expansion rate H) the 
transverse variables {K2x, L~, Sx, N• rapidly decay n to zero and thus are 
clearly outlived by the longitudinal quantities {A, A, K, K}. For such a 
situation we can restrict ourselves to that late phase of the dynamical evolution 
where only the longitudinal variables are alive and then obey the simplified 
equations of motion (8.19a)-(8.19d), 

3. + ( 3 H + A ) A  + ~ 2 - ~ 2 - K  2 + X = 0  (8.22a) 

n n n 
A + (3H + 2A)A  - 2K" K + X = 0 (8.22b) 

n n 
+ (3H + 2A)K  + 2 A - K  = 0 (8.22c) 
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n n 
K + (3H + 2A)K + 2 A . K  = 0 (8.22d) 

The advantage of this truncated dynamical system is that it admits the desired 
elimination of the kinetic fields in a rather elegant way. 

Indeed, adding equations (8.22c) and (8.22d) and observing the density 
dynamics (8.17a)-(8.17b) readily yields for the sum of the kinetic fields in 
terms of the densities 

n n / /~in '~ 3 Pin + Sin 
K(0) + K(0) - -  (Kin "F Kin)~--~- ) p(0) + S(0) (8.23a) 

Moreover, subtracting in place of adding yields 

I~in - -  Sin 

o(o) - s(O) 
(8.23b) 

This is the desired relation for the elimination of  the kinetic fields in favor 
of the densities. But observe that, according to these results, the longitudinal 
kinetic fields must become singular on the Fierz cone C~ As we shall readily 
see, this singular behavior on CF is the crucial point for the possibility of 
transitions into the pure states. 

In the next step we will add and subtract equations (8.22a) and (8.22b) 
in a similar way, but it is convenient to first introduce here some new notations: 

('1 
for the sum of the localization coefficient A, A we put [cf. (8.17a)-(8.17b)] 

n 1 1 d 
A + A - (p + s) := - 

2 p + s d 0  

~lp + sl ,  
: =  - , t i p  + s I ,  

p + s > 0  
p + s < 0  

(8.24a) 

and analogously for the difference 

n 1 1 a 
A - A - (p - s) := - -  (8.24b) 

2 p - s d 0  ~qd0 

,fi-0 - s l ,  p - s > 0  
"q:= - x / ~  sl ,  p - s < 0  

n 
Furthermore, the relevant constituents X and X of the mass operator ~,  (8.21), 
are expressed in terms of the new variables 6, ",1 as 
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n ou , , (6 )  
6 . ( x  + x )  = . i  

0~ 

n au=(-q)  
- q . ( x  - x )  - 

0"q 

with the "fictitious potential" U= being given by 

and 

{Mc~2(+ 1 a36,_ 6 z 1 a964-q4) 
u , , ( o  = +- 

(upper sign: 6 > 0; lower sign: 6 < 0) 

(8.25a) 

(8.25b) 

(8.26a) 

2/&~.~ 6 6to o & , ( O  826 86 (Ki. + - (8.28a) 

d2~1 + 3H d'q _ (K~, n _ / ~ i n  ~6 '114 _ OU=('I1) 
dO E -~  - Ki")z['-~) ~13 0"q (8.28b) 

because in Do there does not exist the combined potential U(6, lq), (8.27). 
But within the Fierz cone D+ U D_, the motion of the fictive panicle can 
be thought to take place under the action of the combined potential U=(6, 
~), to be substituted on the fight-hand sides of (8.28a)-(8.28b) in place of  

U| = \ h ] \ - 2  + ~ a964~14 (8.26b) 

(upper sign: "q > 0; lower sign: ~1 < 0) 

Obviously, within the Fierz cone D+ U D_ it is possible to combine both 
partial potentials (8.26a)-(8.26b) into a single one [U=(6, Xl), say], namely 

U=(6, rl) = - 2  a3(64 + .q4) _ (62 + .q2) + 4 (8.27) 

(upper sign: D+; lower sign: D_) 

but outside the Fierz cone (i.e., in Do) the introduction of such a total potential 
U,.(6, "q) is not possible. 

Consequently, with these arrangements the addition and subtraction of 
the first two equations of the system (8.22a)-(8.22d) yields a Newtonian 
equation for the motion of a fictive mechanical point particle over density 
configuration space being reparametrized by the coordinates { 6, "q }, (8.24a)- 
(8.24b). In Do (i.e., outside the Fierz cone), this equation of motion reads 
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those partial potentials U~(~) and U~('q). Moreover, within that region D§ U 
D_ the kinetic terms on the left-hand sides of (8.28a)-(8.28b) can also be 
absorbed into some potential Ux{~, ~1) ("kinetic potential") 

Uh-(~. xl) = (K~, + Ki,) ~ + (K~, - Kin) yi2] (8.29) 

so that the total potential U(~. rl) becomes 

U(~, -q) = Ur(~, ~q) + U~(~, "q) (8.30a) 

lim U(~, rl) = U~(~, r;) (8.30b) 

By use of this total potential U(~, ~1), the Newtonian equations (8.28a)-(8.28b) 
simply read for the region D.  U D_ 

d2~ + 3H at ou(~, o) 
dO 2 dO O~ 

d2"q + 3H _at = ov(~, ,q) 
d02 dO 8~q 

(8.31 a) 

(8.31b) 

With these results at hand, we are now able to decide the question of 
the transitions from mixtures into pure states. Within the Newtonian point- 
particle approach such a transition would be equivalent to the termination of 
the particle's motion at the Fierz cone CF However, this is not possible, 
because the kinetic potential Ur, (8.29), becomes infinite on the Fierz cone 
CF (~ = 0, aq = 0) and therefore the cone C~ acquires the repulsive properties 
of an impenetrable barrier for the particle. This repulsive property exists on 
both sides of the barrier (i.e., inside and outside of the Fierz cone CF) and 
it persists even in the limit of an increasing extension of the universe ( ~  
oo). Since this repulsive effect is due to the kinetic potential Ur, it is an 
intrinsically dynamic effect and therefore completely independent of the 
presence of some nonlinear potential of the Higgs or Fierz type. For this 
reason, we expect that in RST the mixtures quite generally cannot become 
pure states, although the present results verify our expectation only for fiber 
dimension N = 2. Observe also that these conclusions are independent of 
whether the universe is expanding or not (,,,-, H -> 0). The reason is that the 
expansion effect enters the mechanical equations (8.31a)-(8.31b) mainly in 
form of a friction term ( ~ H )  and the presence of friction cannot falsify 
the mechanical conclusions drawn above. Furthermore, the repulsive cone 
potential UK remains present for any finite value ~t of the universe's size 
and consequently it does not help making the universe infinitely large ( ~  
oo). On the other hand, if we start with an exact pure state, then it will remain 
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a pure state for all future time, as predicted by equation (8.6). But if we start 
with some mixture arbitrarily close to a pure state, the repulsive potential 
UK will cause the fictive particle to move off the Fierz cone, and correspond- 
ingly the (approximate) pure state will be transmuted into a true mixture. 
This transmutation will be irreversible if dissipation is included (~'~- expansion 
of the universe). 
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